5,123 research outputs found

    The problem of the Pleiades distance. Constraints from Stromgren photometry of nearby field stars

    Get PDF
    The discrepancy between the Pleiades cluster distance based on Hipparcos parallaxes and main sequence fitting is investigated on the basis of Stromgren photometry of F-type stars. Field stars with the same metallicity as the Pleiades have been selected from the m1 index and a technique has been developed to locate the ZAMS of these field stars in color-magnitude diagrams based on the color/temperature indices b-y, v-y, and beta. Fitting the Pleiades to these ZAMS relations results in a distance modulus of 5.61+/-0.03 mag in contrast to the Hipparcos modulus of 5.36+/-0.06 mag. Hence, we cannot confirm the recent claim by Grenon (1999) that the distance problem is solved by adopting a low metallicity of the Pleiades ([Fe/H]=-0.11) as determined from Geneva photometry. The metallicity sensitivity of the ZAMS determined by the field stars is investigated, and by combining this sensitivity in all three color/temperature indices b-y, v-y, and beta we get a independent test of the Pleiades distance modulus which support our value of 5.61 mag. Furthermore, the field star sample used for the comparison is tested against theoretical isochrones of different ages to show that evolutionary effects in the field star sample are not biasing our distance modulus estimate significantly. Possible explanations of the Pleiades distance problem are discussed and it is suggested that the discrepancy in the derived moduli may be linked to a non-spherical shape of the cluster.Comment: 11 pages, 5 figures, accepted for publication in A&

    The lithium isotope ratio in the metal-poor halo star G271-162 from VLT/UVES observations

    Get PDF
    A high resolution (R = 110.000), very high S/N (>600) spectrum of the metal-poor turnoff star G271-162 has been obtained in connection with the commissioning of UVES at VLT/Kueyen. Using both 1D hydrostatic and 3D hydrodynamical model atmospheres, the lithium isotope ratio has been estimated from the LiI 670.8 nm line by means of spectral synthesis. The necessary stellar line broadening (1D: macroturbulence + rotation, 3D: rotation) has been determined from unblended KI, CaI and FeI lines. The 3D line profiles agree very well with the observed profiles, including the characteristic line asymmetries. Both the 1D and 3D analyses reveal a possible detection of 6Li in G271-162, 6Li/7Li = 0.02 +-0.01 (one sigma). It is discussed if the smaller amount of 6Li in G271-162 than in the similar halo star HD84937 could be due to differences in stellar mass and/or metallicity or whether it may reflect an intrinsic scatter of the Li isotope ratio in the ISM at a given metallicity.Comment: 5 pages with 6 figures. Accepted as a letter in A&

    O/Fe in metal-poor main sequence and subgiant stars

    Full text link
    A study of the O/Fe ratio in metal-poor main sequence and subgiant stars is presented using the [OI] 6300A line, the OI 7774A triplet, and a selection of weak FeII lines observed on high-resolution spectra acquired with the VLT UVES spectrograph. The [OI] line is detected in the spectra of 18 stars with -0.5 < [Fe/H] < -2.4, and the triplet is observed for 15 stars with [Fe/H] ranging from -1.0 to -2.7. The abundance analysis was made first using standard model atmospheres taking into account non-LTE effects on the triplet: the [OI] line and the triplet give consistent results with [O/Fe] increasing quasi-linearly with decreasing [Fe/H] reaching [O/Fe] ~ +0.7 at [Fe/H] = -2.5. When hydrodynamical model atmospheres representing stellar granulation in dwarf and subgiant stars replace standard models, the [O/Fe] from the [OI] and FeII lines is decreased by an amount which increases with decreasing [Fe/H]. The [O/Fe] vs [Fe/H] relation remains quasi-linear extending to [O/Fe] ~ +0.5 at [Fe/H] = -2.5, but with a tendency of a plateau with [O/Fe] ~ +0.3 for -2.0 < [Fe/H] < -1.0, and a hint of cosmic scatter in [O/Fe] at [Fe/H] ~ -1.0. Use of the hydrodynamical models disturbs the broad agreement between the oxygen abundances from the [OI], OI, and OH lines, but 3D non-LTE effects may serve to erase these differences.Comment: ps file, 18 pages (including 10 figures) - Accepted for publication in A&

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to 3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table

    The First Galaxies: Clues from Element Abundances

    Get PDF
    It has recently become possible to measure directly the abundances of several chemical elements in a variety of environments at redshifts up to z = 5. In this review I summarise the latest observations of Lyman break galaxies, damped Lyman alpha systems and the Lyman alpha forest with a view to uncovering any clues which these data may offer to the first episodes of star formation. The picture which is emerging is one where the universe at z = 3 already included many of the components of today's galaxies--even at these early times we see evidence for Populations I and II stars, while the `smoking gun' for Population III objects may be hidden in the chemical composition of the lowest density regions of the IGM, yet to be deciphered.Comment: 15 pages, LaTex, 8 Postscript Figures. To appear in the Philosophical Transactions of The Royal Society, Series

    Cosmological Cosmic Rays and the observed Li6 plateau in metal poor halo stars

    Full text link
    Very recent observations of the Li6 isotope in halo stars reveal a Li6 plateau about 1000 times above the predicted BBN abundance. We calculate the evolution of Li6 versus redshift generated from an initial burst of cosmological cosmic rays (CCRs) up to the formation of the Galaxy. We show that the pregalactic production of the Li6 isotope can account for the Li6 plateau observed in metal poor halo stars without additional over-production of Li7. The derived relation between the amplitude of the CCR energy spectra and the redshift of the initial CCR production puts constraints on the physics and history of the objects, such as pop III stars, responsible for these early cosmic rays. Consequently, we consider the evolution of Li6 in the Galaxy. Since Li6 is also produced in Galactic cosmic ray nucleosynthesis, we argue that halo stars with metallicities between [Fe/H] = -2 and -1, must be somewhat depleted in Li6.Comment: 8 pages, 6 figures, version accepted for publication in Ap

    Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics

    Full text link
    Precise abundance ratios are determined for 94 dwarf stars with 5200 < Teff < 6300 K, -1.6 < [Fe/H] < -0.4, and distances D < 335 pc. Most of them have halo kinematics, but 16 thick-disk stars are included. Equivalent widths of atomic lines are measured from VLT/UVES and NOT/FIES spectra with resolutions R = 55000 and R = 40000, respectively. An LTE abundance analysis based on MARCS models is applied to derive precise differential abundance ratios of Na, Mg, Si, Ca, Ti, Cr, and Ni with respect to Fe. The halo stars fall into two populations, clearly separated in [alpha/Fe], where alpha refers to the average abundance of Mg, Si, Ca, and Ti. Differences in [Na/Fe] and [Ni/Fe] are also present with a remarkably clear correlation between these two abundance ratios. The `high-alpha' stars may be ancient disk or bulge stars `heated' to halo kinematics by merging satellite galaxies or they could have formed as the first stars during the collapse of a proto-Galactic gas cloud. The kinematics of the `low-alpha' stars suggest that they have been accreted from dwarf galaxies, and that some of them may originate from the omega Cen progenitor galaxy.Comment: Accepted for publication in A&A as a four-page Letter with five pages of online materia
    corecore